Endoclita excrescens is one of the moths observed in the late Autumn in northern Kyūshū (Figure 1.). The reason why this moth was given the name *Endoclita excrescens* is that its imago hands down at rest on a branch with its large foreleg in such a position that the moth resembles a bat. It is known that there are about thirty different species of this genus in the world, centered on south-east Asia and India. In Japan there is *Endoclita excrescens* and another species, *Phassus signifier* Walker. It is presumed that the *Endoclita excrescens* group is one of the most primitive of Lepidoptera. However, there is still a question on the appropriate classification of the group and this is a subject of discussion among the experts.

Many parts of the life cycle of *Endoclita excrescens* are not known, but it has various interesting behaviors. I will introduce it briefly. When the imago opens its wings its size is about 10 cm, and a few lines of spots are observed on the forewings. Just after emergence the color of the forewing is greenish, but after becoming a collection specimen the color becomes brownish as time goes by. The hind wings are dark brown. Toward the evening a few male imagos fly together. It is presumed that this flying is for copulation. It is not known how female imagoes fly around a group of male imagos and are attracted to the group. The hind legs of the male imago, compared with the fore-legs or middle-legs, are very small and have thick peculiar hair at the tibiae, which is thought to be the scent organs. Therefore, female imagos may be attracted to it and come to the male imago group flying together. The eggs are black-brown, almost globular in shape, and about 0.8 mm in diameter. Special mention would be made of the smallness of the egg compared with the size of the abdominal region of the female imago. The total oviposition number of per female imago is reported to about 10,000. This number falls into one of the largest oviposition numbers among Lepidoptera that has been reported so far. However, female imagoes of *Endoclita excrescens* (Butler) start to oviposit without copulation just after emergence.

Oviposition after copulation is in the form of scattering. A considerable number of eggs are thought to be of no use. Oviposited eggs pass the winter as they hatch the next spring. The larvae are called ‘hachimaki-worms’ or ‘kusari-worms’ and make tunnels in the thick branches and the trunks of trees, such as willows, poplars, gindor, *Mallotus japonicus* Muel.Arg., *Albizia julibrissin* (silk tree), *Clerodendron trichotomum* Thumb, and feed on the xylem of these plants. After a typhoon, poplars and willows are often broken and fallen. When you look at the breach the tunnels made by the larvae can often be observed. The larvae make a hemispheric cover at the entrance of the tunnel which is made of excrement and wood splinters connected by thread. Where a branch is small the cover surrounds the branch and and forms a globular shape (Figure 2). But the larvae do not enter into the hard wood of a tree at the young stage. First they enter into the stems of soft grass (tear grass, Coix lacrymajobi) and then move to enter into a hard tree after growing for some extent.

At pupation they make lids whose thickness is 3-5 mm (Figure 4) by using only thread at the entrance of the tunnel. The pupae move vertically in the tunnel passage. This movement is thought to be made possibly by the diameter of the pupa nearly being the diameter of the tunnel and that the abdominal region of the pupa makes similar movement to those of the abdominal region of larvae, therefore the small protuberances of each node of the abdominal surface play
the role of prolegs in the larva. Actually, the speed is very fast and is nearly the same as the walking speed of a larva of a swallowtail. At the time of emergence the larva comes out of the tunnel and push to open the lid, described above, with it head. And next it makes a hole in the cover by using the sharp protuberance of the head and emerges in such a position with nearly half the body protruding out (Figure 3).

However, the accurate age of and the development of the larva over the whole year, and the relationship to *Endoclita signifier* Walker and so on should be investigated in the future. If one is interested in this insect, one should look at the trunk of a branch of willow or poplar around one’s house or on the way to school or office if there are such trees.

Finally, I acknowledge Mr. Nobutoyo Eda (Entomology, Department of Agriculture, Kyūshū University) for photographing the specimens, and Mr. Naoki Kōtoku (Fukuoka Horticultural Experiment Station) and Mr. Kenji Ōhara (Entomology, Department of Agriculture, Kyūshū University) for collecting *Endoclita excrescens*. 