コウモリガ幼虫の加害植物について

松沢 宽, 豊村啓輔**, 小浜礼孝***

1 緒 言

近年コウモリガ属 Phasus による果樹、林木等の有効植物の病害にわたる被害が、ようやく問題視されるようになったことは事実であるが、しかし詳細な現在のもの3表では、これらの生態はきわめて曖昧な点が多く、防除対策上大きな支障を来たしている。ことに、本邦西南部では、コウモリガ Phasus quadrispinosus Butler、やマダラコウモリガ Phasus quadrispinosus Butler による落葉果樹類の被害が目立ち、また、キジ、セリグマ等の有効類の被害が大きいが、最近農業区画では、メジ、トウエロコシ等の団体的な大被害も見られ、と伝えられており、はなんだ害虫の問題となっている。ところが発生の問題として、コウモリガの疫病に、今でも不明の不明な害虫の比較として、とくに問題を追及せねばならぬものが少なくなく、また不適切な加熱がとられていることもあるので、コウモリガの生態疑問は、はなんだ害虫を求めるというように言える。

果樹区では昭和33年（1958）以来、これらの生態に関する研究を開始し、その一環として、今回コウモリガ幼虫の加害植物についての調査を行なったので、以下にその結果を述べることにするが、正確の点はなお今後の調査によって確かめていきたいと思われる。

この研究所発表、本調査研究に热心な協力をいただいた徳島県中村中学校教務部田中加代氏、同県立中学校教務部田中加代氏、同県立中学校教務部田中加代氏、同県立中学校教務部田中加代氏に感謝申し上げる。

II 調査方法

今回の加害植物の調査は、林地、園地、果樹園、庭園などの区画的な調査を主として、時に筆者らおよび協力者らによる野外における自然発見を加えたものである。果樹園などの被害状況調査は、植物見取りをもとにして果樹の種類ごとに2人組を作り、1本ごとに調査しないように注意して実施した。

II 調査成績

1. 加害植物

コウモリガ幼虫の加害の対象となる被害者は、はなんだ害虫についているようであるが、とくにコウモリガ、キマダラコウモリなどの加害をうける植物の数が多い。コウモリガの加害総数に関する従来の断片的な記録を絶対すると1000種、今日ではかなりの多さに達しているが、それでもなお不十分なもので、かわらよりその後の調査要項が存在する。筆者らがこれまでに調査して知り加害植物をと/or に知らされたものを絶対すると、第1表のように、43種、100種となるが、これらの中には、同時にキマダラコウモリの加害をうけるものも若干存在するようである。

そこで、こうした各種の植物に幼虫が食害する時間であるが、これは現在のところ不明瞭で、しかも下旬にはない。ただ、5月上旬、もし下旬例、第1表のように春新しく伸長をは
第23巻第1号 (1993)

オオヨモギ	Artemisia Vulgaris L. var. vulgatisma BSS
ヒノジョオン	Eriogonum annus L.
ヒノアザミ	Cirsiwn nipponicum MAKINO
ダリア	Dahlia pinnata CV.
ヒマワリ	Helianthus annuus L.
ニナリ	Helianthus tuberosus L.

イネ科

Gramineae

コムギ	Triticum aestivum L.
ススキ	Hordeum vulgare L. var. hexastichon ASCHERS
ライム	Secale cereale L.
タウ	Zea Mays L.
フラガリス	Sorghum bicolor MOENCH
シュカラム	Dolichos lablab L.
サス	Phragmites communis TRINUS
ミスカン	Miscanthus sinensis ANDERSE
カモジナラガユシ	Agropyron canaoyi OHWI

サトイモ科

Aracea

| ショウラ | Aconitum Calamum L. var. asiaticum PERS. |

ツユグサ科

Commeniaceae

| ツユグサ | Commelina communis L. |

ニリ科

Liliceae

| ニリ | Lilium sp. |

ミカン科

Zingiberaceae

| ミカンガ | Zingiber elegans |
| ショウガ | Zingiber officinale ROSS |

カンナ科

Cannaceae

| ハナカンナ | Cannas generalis BAILEY |

*文献のみによる。以上はほか、なお株類、タナキ類数を数えるという例に。

第2表 同一樹におけるコウモリの食虫数の変動

(香川大学農学部附属ポプラ園, 1952)

<table>
<thead>
<tr>
<th>週別</th>
<th>1月</th>
<th>2月</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

計 (平均)：60(4) 116(7.7)

(1) Aは年間に移する数を欠体数。
(2) A, Bの数は各株別に求めた数で、その差を差数を欠体数。
大きい、場所によっては、滋山治水あるいは荒廃害を地団兵等に隠されたヤシブドウ、人家周辺のウバメガシやマランノキなどの生垣なども大害に至っていることが、もちろんこのようなところでは、もともと栽培のもっとも増長する植物が、多数そこに存在する形をとっているからである。しかし、そのような場合には、1本に多数のコンロリガ幼虫が樹幹に食害して生活することも多く、この間の害をより観察するいくつかの調査成績を示せば、第3-4表および第2図のようである。まったく本種の被害には驚くをおこたってはならないと思う。

第3表 香川大学農学部附属果樹園におけるコウモリガ類による被害実態（1962）

<table>
<thead>
<tr>
<th>果樹その他の種類</th>
<th>植栽本数</th>
<th>前年の被害本数（1961）</th>
<th>虫数</th>
<th>本年の被害本数（1962）</th>
<th>虫数</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>温州ミカン</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>カキ</td>
<td>55</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>プドウ</td>
<td>65</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ビワ</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>シモモ</td>
<td>105</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>スモモウメ</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>イヌサキ</td>
<td>219</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ノタメコイナ</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ハンテンボク</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ヤマハニンギ</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>アルカシ</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B 井戸果樹園（面積140ha）

<table>
<thead>
<tr>
<th>果樹その他の種類</th>
<th>植栽本数</th>
<th>前年の被害本数（1961）</th>
<th>虫数</th>
<th>本年の被害本数（1962）</th>
<th>虫数</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>温州ミカン</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>カキ</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>プドウ</td>
<td>81</td>
<td>12</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>ビワ</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>シモモ</td>
<td>47</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>スモモウメ</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>イヌサキ</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ノタメコイナ</td>
<td>79</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>ハンテンボク</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ヤマハニンギ</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>アルカシ</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

第4表 香川大学農学部備内におけるイクチハギ、ポプラのコウモリガ類による被害（1962）

<table>
<thead>
<tr>
<th>果樹種</th>
<th>植栽本数</th>
<th>前年の被害本数（1961）</th>
<th>虫数</th>
<th>本年の被害本数（1962）</th>
<th>虫数</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>イクチハギ</td>
<td>34</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>ポプラ</td>
<td>58</td>
<td>21</td>
<td>58</td>
<td>13</td>
<td>22</td>
<td>34</td>
</tr>
</tbody>
</table>

第5表 香川県三木町大宮タイワンギリ園におけるコウモリガ類による被害（1962）

<table>
<thead>
<tr>
<th>果樹種</th>
<th>植栽本数</th>
<th>前年の被害本数（1961）</th>
<th>虫数</th>
<th>本年の被害本数（1962）</th>
<th>虫数</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>イクチハギ</td>
<td>39</td>
<td>17</td>
<td>39</td>
<td>17</td>
<td>17</td>
<td>56</td>
</tr>
<tr>
<td>ポプラ</td>
<td>58</td>
<td>21</td>
<td>58</td>
<td>13</td>
<td>22</td>
<td>34</td>
</tr>
</tbody>
</table>
第2図 数値の関係におけるコウモリガ食入数の傾向分布
(A)タイワニギリ (B)ブドウ (C)ブドウ（実線）・タイワニギリ（点線）

3. 被害様相

第3図 タイワニギリのコウモリガによる被害(A・B)

これらの被害者は、いわゆる被害特徴があり、カニウシムシ
CerambicusidaeやポケトウガCossidae
などの被害も容易に区別できる。

第3-4図のよう
考察

以上のべたように、ウミリガの幼虫被害の障害は、かなり広とうねっているが、とくに著しい被害をこうむる植物としては、ポプラ、ヤナギ類、サイプレス、すな、ヌラ、クサギ、ウバメガシ、ネズワキ、イシハラ、マサキ、ブドウ、プラシノキ、カキ、チリモ、ツメキ、キリ、タイワソウリなどがあげられる。しかしこの様々な枝のとりに著しい害虫では、1株に数穂あるいは枝に数穂も食害がすることができ、果樹類や他の有用植物では、果実による被害も被害のもととなっていしばしば大きな損失をうけることがある。

しかしながら、これらウミリガの幼虫時代の動きを見ると、飛化後間もない間の、主として草本類に対する若令幼虫食害期を、その後さらに考えられる本格的な食害期を、次のような知見をもつて、これにより防除の必要があげられるようと思われる。したがって、これらの害虫の食害防止にいたる防除法の防除、一応この防除をしようとして、2段階を考察する必要があるような推移が、この点に関しては、今後とも十分な調査を行なってみたい。

なお、近年の報告によれば、ヨーマリガ類（ミスリリガ）などのウミリガ類による被害が発生することがあるとのことで、本体でも数穂、枝端が知られているようである。結体害虫であるウバマムシ Chiropachora japonica GORY やナツサギキリ Spondylus superstitius LINNE（両とも幼虫期にマツや他の枝を食害する）が果実被害を加害することはよく知られていたが、ウミリガ類も一方で同様な加害者であるとすれば、これまた大いに注目すべきことである。

摘　要

ウミリガの加害の対象となる植物を調査し、その大要をのべた。成績はおおむね次のとごくである。

(1) ウミリガの加害の対象となる植物は、原種105種と共に、その中とくにはたはたしい被害をこうむることが多い。ポプラ、ヤナギ類、サイプレス、すな、ヌラ、クサギ、ウバメガシ、ネズワキ、イシハラ、マサキ、ブドウ、プラシノキ、カキ、チリモ、ツメキ、キリ、タイワソウリなどである。

(2) ウミリガの若齢の幼虫は、各種の樹木に食害を加える。その他の枝に食害を加えることもまれでなく、花蕾調査の見地からも注意すべきものであることがわたった。

(3) とくにウミリガの害虫のような樹木においては、被害率が高いばかりでなく、彼等の1株あたりの食害数もしのじしく大で、風害などによる被害を損失に移す事態が非常に多く見受けられた。
On the food plants of the larva of the swift moth, Phasius excrescens Butler

Hiroshi Matsuzawa, Keisuke Toyomura and Yukitaka Koma

Summary The description of the research on the food plants of the larva of the swift moth was made in the present paper. The results of the research are summarized as follows:

(1) The damage of the plants such as Populus, Salix, Alnus, Castanea, Quercus, Albizia, Amorpha, Euonymus, Vitis, Callistemon, Diospyros, Osea, Clerodendron, Paulownia was especially great, although the number of species of the food plants of the swift moth larva. Phasius excrescens Butler, reached 43 families and 163 species.

(2) It was observed that the young larva of the swift moth, eats into the stem of various herb-plants such as Chrysanthemum, Canne, etc. very often, previous to the real boring into the various woods. Therefore, it must be recognized that the fact mentioned above is very noticeable from the floricultural point of view.

(3) Not only the rate of damage of the trees but also the number of borings into the wood per tree was great when the swift moth larva attacks their favorite trees, and, accordingly, the cases of the break down of the branches or the trunks by the strong wind were observed very often.

(Received May 20, 1963)